Abstract

When confronted with variation in temperature, most ectotherms conform to a growth rule that “hotter is smaller”. This phenomenon can have important implications on population dynamics, interactions with other species, and adaptation to new environments for arthropods. However, the impact of other environmental factors and genetics may affect that general rule. Furthermore, most studies measure a single body part, and do not examine how temperature and other factors alter the allometric relationship between measurements of growth. In this study, we test the hypothesis that temperature and nutrition, while strongly affecting growth, do not change the allometric relationship between body mass and wing length in the mosquito Aedes albopictus. We tested this hypothesis by growing larval mosquitoes from two populations at five temperatures with three food levels. Contrary to our hypothesis, we find that temperature has a profound effect on allometry, with higher temperatures resulting in mosquitoes with shorter wings and greater body mass, and that the effects of temperature are dependent upon available food and population origin. We therefore reject our hypothesis and propose several testable mechanisms that will provide greater insight into the relationship between temperature, food, and measures of growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.