Abstract

Abstract In physoclistous fishes, barotrauma caused by rapid decompression during capture may be an important source of fishing mortality that is unquantified for some fisheries. We developed a predictive logistic model for barotrauma incidence in Yellow Perch Perca flavescens and applied this model to Ohio's recreational and commercial fisheries in Lake Erie where fisheries managers implicitly consider discard mortality to be negligible in current stock assessment. As expected, capture depth explained most of the variation in incidence, with comparatively small effects of season, sex, and size categories. Measurements of whole body and gonad density provided limited explanation for the categorical effects. Both fisheries spanned a range of depths (7.6 to 16.8 m) that corresponded to a broad range of barotrauma incidence (13 to 74%). Using a recent example, we estimated that additional fishing mortality due to barotrauma in discards was approximately six-fold higher in the commercial than recreational fishery. Overall, this additional mortality was <1% of lake-wide population size estimates. Thus, the assumption that all discarded Yellow Perch survive is unlikely to result in a detectable bias in population estimates. One caveat is that we still do not understand how strong year-classes might influence discard mortality via increased discard rate and barotrauma incidence for small fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call