Abstract

The mosquito-borne disease avian malaria (Plasmodium spp.) has impacted both captive populations and wild individuals of native New Zealand bird species. However, whether or not it is a cause of concern to their wild populations is still unclear. In Hawaii, the disease has been a major factor in the population declines of some native forest bird species, often limiting their elevational distribution due to an inverse relationship between force of infection and elevation. While studies have investigated latitudinal patterns of infection in New Zealand, elevational patterns are unexplored. To address this, a survey was conducted in Nelson Lakes National Park, a site experiencing native bird declines in which disease has been suggested as playing a role, to investigate whether there is a similar inverse relationship in New Zealand. Results from blood samples (n = 436) collected over three seasons across a broad elevational range (650–1400 m) support there being such a relationship. In addition, an overall higher prevalence in non-native (14.1%) versus native birds (1.7%) may indicate differential impacts on these two groups, while particularly high prevalence in non-native Turdus spp. supports previous suggestions that they are key reservoir hosts for the disease. Overall, these findings add weight to the hypothesis that avian malaria is playing a role in ongoing declines of native New Zealand birds.

Highlights

  • Emerging infectious diseases, defined as disease-causing agents that rapidly increase in geographic range, host range, or prevalence, pose a serious threat to the conservation of global diversity [1]

  • Based on data from the current study, we suggest that the Turdus spp. may be key reservoir hosts for malaria parasites in Nelson Lakes National Park (NLNP)

  • Our results support the potential for a higher force of avian malaria infection at the lower elevations of our field site

Read more

Summary

Introduction

Emerging infectious diseases, defined as disease-causing agents that rapidly increase in geographic range, host range, or prevalence, pose a serious threat to the conservation of global diversity [1]. Often it is native wildlife species that are threatened by non-native parasites they have not evolved with or adapted to [2,3]. Avian malaria is one such disease that may be of concern to the New Zealand avifauna, considered to be the most extinction-prone in the world [2,4]. Avian malaria is a vector-borne disease caused by protozoan parasites of the genus Plasmodium [5]. Avian Plasmodium spp. are cosmopolitan in range (except Antarctica; [6]) and can infect a broad range of bird hosts causing a range of impacts [7,8].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call