Abstract

Conventional elastography involves quasistatic mechanical compression (external or internal) of the tissue under ultrasonic insonification to obtain radiofrequency (RF) A-lines before and after compression. Cross-correlation of the pre- and postcompression A-lines results in displacement images with axial gradients that produce the strain images (strain elastograms). Though the strain elastograms show structural similarities to the modulus images, they are not related in a simple way to the modulus images because the strains depend on both modulus and geometry of the materials being deformed. Therefore, a quantification of the similarities between the strain and modulus images may enhance the interpretation confidence of strain elastograms in depicting tissue structure. To demonstrate similarities between modulus images and strain elastograms, a feasibility study of using nanoindentation to obtain modulus images of thin slices of tissue and tissue-mimicking phantoms (agar-gelatin mixtures) was performed first, with encouraging results. This was followed by a comparison of modulus images and strain elastograms obtained from the same sample slices. The experimental results indicated that, under certain experimental conditions, it is feasible to perform quantitative comparisons between strain images (using elastography) and modulus images. A good visual, as well as quantitative, correspondence between structures in the modulus and strain images could be obtained at a 3-mm scale. (E-mail: [email protected])

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call