Abstract

The delivery of not only free cholesterol but also cholesterol esters to cells by low-density lipoprotein (LDL) has hitherto been unstudied. Minor compounds present in mammalian-derived food include cholesterol linoleate and arachidonate. Evidence is presented that these esters are directly incorporated into VLDL and are responsible for the deleterious effects of atherosclerosis. Cholesterol esterified with these polyunsaturated fatty acids (PUFAs) is readily oxidized at the PUFA residue during storage and heating. Apparently, the liver is unable to distinguish between nonoxidized and oxidized cholesterol PUFA esters and also incorporates the latter into VLDL, which is transformed to LDL. When this LDL is transferred to endothelial cells, the toxic products are liberated and induce cell damage. Cell damage is combined with structural changes that influence neighboring cells and cause an influx of Ca2+ ions and activation of phospholipases and lipoxygenases, resulting in production of lipid hydroperoxides (LOOHs). When the level of free PUFAs generated by phospholipases exceeds a certain limit, lipoxygenases commit suicide, causing liberation of iron ions. The latter react with LOOHs and thus induce a switch from enzymatic to nonenzymatic generation of lipid peroxidation (LPO) products. Although the LOO. radicals produced in enzymatic reactions are deactivated within the enzyme complex, LOO. radicals generated in nonenzymatic reactions are able to attack any biological compound, inducing severe damage. Apparently, iron ions and LOOH molecules at the surface of injured cells transfer the nonenzymatic LPO reactions to the phospholipid layer of bypassing lipoproteins, thus explaining why inflammatory diseases, such as diabetes, are combined with atherogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.