Abstract

The numerosity of any set of discrete elements can be depicted by a genuinely abstract number representation, irrespective of whether they are presented in the visual or auditory modality. The accumulator model predicts that no cost should apply for comparing numerosities within and across modalities. However, in behavioral studies, some inconsistencies have been apparent in the performance of number comparisons among different modalities. In this study, we tested whether and how numerical comparisons of visual, auditory, and cross-modal presentations would differ under adequate control of stimulus presentation. We measured the Weber fractions and points of subjective equality of numerical discrimination in visual, auditory, and cross-modal conditions. The results demonstrated differences between the performances in visual and auditory conditions, such that numerical discrimination of an auditory sequence was more precise than that of a visual sequence. The performance of cross-modal trials lay between performance levels in the visual and auditory conditions. Moreover, the number of visual stimuli was overestimated as compared to that of auditory stimuli. Our findings imply that the process of approximate numerical representation is complex and involves multiple stages, including accumulation and decision processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call