Abstract

To perform safe implant treatment, the anatomical structure and bone quality at implant placement sites are evaluated based on a patient's computerized tomography (CT) data, but there is no definite method to determine placement sites and the appropriate number of implants. The objective of this study was to investigate the influence of the number and arrangement of implants on the stress distribution in 3-unit posterior fixed partial dentures for the posterior mandible by mechanical analysis using the finite element method. Three-dimensional finite element analysis models were constructed from the CT data of a patient with missing mandibular teeth (Nos. 35, 36, 37). Implant placement was simulated under various conditions. Superstructures were connected and fixed with a titanium frame. As the loading conditions, 400 N vertical and lateral loads (45° on the lingual side and 45° on the buccal side) were applied to the upper areas of Nos. 35, 36, and 37, and the stress distribution and frame displacement were evaluated. When a vertical force was applied, no difference of the von Mises stress was noted among the 5 experimental conditions. When lateral force was applied from the lingual and buccal sides at 45°, the stress was higher than that induced by vertical force under all conditions, and it was especially high under mesial and distal cantilever conditions. When displacement of the titanium frame was measured, the displacement caused by lateral force was greater than that due to vertical force. In addition, comparison between long and short distal cantilever bridges revealed that displacement of the titanium frame tended to be smaller when the short cantilever was used. These findings suggested that the stress on peri-implant tissues and displacement of the titanium frame vary depending on the configuration and number of implants, with greater stress and more marked displacement of the titanium frame being induced by lateral force when the number of implants is reduced and a cantilever bridge is selected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call