Abstract

It has been customary to accept that the observation of a highly deshielded proton is conclusive evidence that the molecule possesses a so-called low-barrier hydrogen bond (LBHB). To analyze this point, we have theoretically studied the features of the hydrogen bonds in hydrogen maleate and hydrogen malonate anions, both compounds experimentally characterized as LBHBs, and hydrogen oxalate anion, which has a hydrogen bond of the normal type. Ab initio electronic calculations along with a monodimensional approach to solve the corresponding nuclear Schrodinger equation are combined in order to obtain the ground vibrational energy levels and wave functions associated with the proton transfer in the three systems. According to our results, in the ground vibrational state the proton connecting the hydrogen bond has a maximum probability to be found in the region of the transition state for the hydrogen maleate and hydrogen malonate systems, so that they are LBHBs, whereas for the hydrogen oxalate the proton is...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.