Abstract

BackgroundHumans and insect herbivores are competing for the same food crops and have been for thousands of years. Despite considerable advances in crop pest management, losses due to insects remain considerable. The global homogenisation of agriculture has supported the range expansion of numerous insect pests and has been driven in part by human-assisted dispersal supported through rapid global trade and low-cost air passenger transport. One of these pests, is the whitefly, Bemisia tabaci, a cryptic species complex that contains some of the world’s most damaging pests of agriculture. The complex shows considerable genetic diversity and strong phylogeographic relationships. One consequence of the considerable impact that members of the B. tabaci complex have on agriculture, is the view that human activity, particularly in relation to agricultural practices, such as use of insecticides, has driven the diversification found within the species complex. This has been particularly so in the case of two members of the complex, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), which have become globally distributed invasive species. An alternative hypothesis is that diversification is due to paleogeographic and paleoclimatological changes.ResultsThe idea that human activity is driving speciation within the B. tabaci complex has never been tested, but the increased interest in fossil whiteflies and the growth in molecular data have enabled us to apply a relaxed molecular clock and so estimate divergence dates for the major lineages within the B. tabaci species complex. The divergence estimates do not support the view that human activity has been a major driver of diversification.ConclusionsOur analysis suggests that the major lineages within the complex arose approximately 60–30 mya and the highly invasive MED and MEAM1 split from the rest of the species complex around 12 mya well before the evolution of Homo sapiens and agriculture. Furthermore, the divergence dates coincide with a period of global diversification that occurred broadly across the plant and animal kingdoms and was most likely associated with major climatic and tectonic events.

Highlights

  • Humans and insect herbivores are competing for the same food crops and have been for thousands of years

  • To begin to explore this we combine a relaxed molecular clock and a globally distributed insect species complex that contains some the world’s most damaging pest species that have been spread from country to country by trade in ornamental plants, to explore whether human activity maybe exerting an influence on the level diversification that has been observed within this complex

  • The relationships of the putative species in the B. tabaci complex are unchanged from the phylogeny generated by Boykin [7], a formal revision of the species complex is pending so the naming used is consistent with that being used in the current literature

Read more

Summary

Introduction

Humans and insect herbivores are competing for the same food crops and have been for thousands of years. The global homogenisation of agriculture has supported the range expansion of numerous insect pests and has been driven in part by human-assisted dispersal supported through rapid global trade and low-cost air passenger transport. One of these pests, is the whitefly, Bemisia tabaci, a cryptic species complex that contains some of the world’s most damaging pests of agriculture. One consequence of the considerable impact that members of the B. tabaci complex have on agriculture, is the view that human activity, in relation to agricultural practices, such as use of insecticides, has driven the diversification found within the species complex. To begin to explore this we combine a relaxed molecular clock and a globally distributed insect species complex that contains some the world’s most damaging pest species that have been spread from country to country by trade in ornamental plants, to explore whether human activity maybe exerting an influence on the level diversification that has been observed within this complex

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call