Abstract

♦ BACKGROUND: A modified version of automated peritoneal dialysis (APD) using not only variable dwell times but also variable fill volumes has been tested against conventional APD (cAPD) with fixed dwell volumes in a randomized controlled clinical study. The results have indicated that the modified schedule for APD, denoted adapted APD (aAPD), can lead to improved small solute clearances, and, above all, a markedly increased sodium removal (NaR). To theoretically test these results, we have modeled aAPD vs cAPD in computer simulations using the 3-pore model (TPM). ♦ METHODS: The TPM, modified by including a transient, initial inflation of small solute mass transfer area coefficients (PS values), was employed. For simulations of osmotic ultrafiltration (UF), the TPM uses a constantly inflated value for PS for glucose and also a reduced value for PS for Na+, setting the peritoneal lymphatic reabsorption term at 0.3 mL/min. The simulations were performed by assuming that increases in intraperitoneal hydrostatic pressure (IPP) are transmitted to the capillary level (via vein compression) and therefore do not significantly affect the Starling balance. Furthermore, the effective peritoneal surface area (A) was set to be variable as a function of intraperitoneal volume (IPV). ♦ RESULTS: The simulations demonstrated a minor improvement of small solute clearances (~0.7 - 1.6%) and a very small improvement of UF and NaR in aAPD compared to cAPD. ♦ CONCLUSIONS: Due mainly to the increased fill volumes in 3 out of 5 dwells in aAPD, this modality caused minor increases in small solute clearances and marginal effects on UF and NaR. The computer simulations point to a need for accurate sodium determinations in aAPD, considering all the methodological problems and pitfalls relevant to determining dialysate Na+ concentrations and peritoneal sodium mass balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.