Abstract
A complete DNA-based inventory of the Earth's present biota using large-scale high-throughput DNA sequencing of signature region(s) (DNA barcoding) is an ambitious proposal rivaling the Human Genome Project. We examine whether this approach will also enable us to assess the past diversity of the earth's biota. To test this, we sequenced the 5' terminus of the mitochondrial cytochrome c oxidase I (COI) gene of individuals belonging to a group of extinct ratite birds, the moa of New Zealand. Moa comprised a large number of taxa that radiated in isolation on this oceanic landmass. Using a phylogenetic approach based on a large data set including protein coding and 12S DNA sequences as well as morphology, we now have precise information about the number of moa species that once existed. We show that each of the moa species detected using this extensive data set has a unique COI barcode(s) and that they all show low levels of within-species COI variation. Consequently, we conclude that COI sequences accurately identify the species discovered using the larger data set. Hence, more generally, this study suggests that DNA barcoding might also help us detect other extinct animal species and that a large-scale inventory of ancient life is possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.