Abstract

River water infiltration into an unconfined porous aquifer (∼73% gravels, ∼12% sands, ∼15% silts and clays) in the Petrignano d’Assisi plain, central Italy, was traced combining isotopic techniques (222Rn) with hydrochemical and hydrogeologic techniques in order to characterize the system under study. The 222Rn gave information about the river water residence times within the aquifer and hydrochemical data, in a two-component mixing model, which allowed estimating the extent of mixing between surface waters and groundwater in wells at increasing distances from the river. The mixing measured in the well closer to the riverbank indicated a higher contribution of river water (up to 99%) during the groundwater recession phase and a moderate contribution (up to 64%) during the recharge phase. A model describing 222Rn concentrations in groundwater as the result of both parent/daughter nuclide equilibrium and mixing process (222Rn mixing/saturation model) was used to describe observed Rn concentrations and mixing index trends with the aim of evaluating water mean infiltration velocities along the transect. The stream bank infiltration velocities obtained by the model ranged from 1mday−1 during groundwater recharge periods, when river water infiltration is lower, to 39mday−1 during recession phases, when river water infiltration is larger.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.