Abstract

Imbalanced learning problems are a challenge faced by classifiers when data samples have an unbalanced distribution among classes. The Synthetic Minority Over-Sampling Technique (SMOTE) is one of the most well-known data pre-processing methods. Problems that arise when oversampling with SMOTE are the phenomenon of noise, small disjunct samples, and overfitting due to a high imbalance ratio in a dataset. A high level of imbalance ratio and low variance conditions cause the results of synthetic data generation to be collected in narrow areas and conflicting regions among classes and make them susceptible to overfitting during the learning process by machine learning methods. Therefore, this research proposes a combination between Radius-SMOTE and Bagging Algorithm called the IRS-BAG Model. For each sub-sample generated by bootstrapping, oversampling was done using Radius SMOTE. Oversampling on the sub-sample was likely to overcome overfitting problems that might occur. Experiments were carried out by comparing the performance of the IRS-BAG model with various previous oversampling methods using the imbalanced public dataset. The experiment results using three different classifiers proved that all classifiers had gained a notable improvement when combined with the proposed IRS-BAG model compared with the previous state-of-the-art oversampling methods. Doi: 10.28991/ESJ-2023-07-05-04 Full Text: PDF

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.