Abstract
Variable rate irrigation (VRI) seeks to increase the efficiency of irrigation by spatially adjusting water output within an agricultural field. Central to the success of VRI technology is establishing homogeneous irrigation zones. In this research, we propose a fusion of statistical modeling and deep learning by using artificial neural networks to map irrigation zones from simple-to-measure predictors. We further couple our neural network model with spatial correlation to capture smooth variations in the irrigation zones. We demonstrate the effectiveness of our model to define irrigation zones for a farm of winter wheat crop in Rexburg, Idaho.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The New England Journal of Statistics in Data Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.