Abstract

Limited root development of nursery stock in root-control bags facilitates harvest but without irrigation may predispose stock to water stress. The effect of bags and irrigation on growth and water relations of field-grown Malus sieboldii var. zumi were investigated following transplanting as large liners into a silty-clay soil. Predawn leaf water potential (ψ), and midday stomatal conductance (gs) and ψ, were measured periodically through the season. Late-season osmotic potential (ψπ), caliper, leaf area, and root growth were also measured. Non-irrigated treatments exhibited water stress during an extended mid-summer drought, as predawn ψ and particularly gs were less than irrigated treatments, resulting in lower vegetative growth and ψπ. For combined bagged treatments water relations did not differ, but leaf area, root growth, and ψπ, but not caliper, were less than non-bagged trees. Growth measurements and ψπ of non-irrigated bagged trees, however, were consistently lower but nonsignificant than the other treatments. Bag-induced root reduction can limit some top growth even with optimum soil water. Moreover, in terms of potential Type-II errors extrapolated over a conventional production cycle, trees grown in root-control bags in normally non-irrigated soils may be more susceptible to water stress and subjected to further cumulative growth limitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call