Abstract
The problem of irrigation planning becomes more complex by considering an uncertainty. The uncertainties can be tackled by formulating the problem of irrigation planning as Fuzzy Linear Programming (FLP). FLP models can incorporate the scenario of real world problem. In the present study, Multi Objective Fuzzy Linear Programming (MOFLP) irrigation planning model is formulated for deriving the optimal cropping pattern plan for the case study of Jayakwadi project in the Godavari river sub basin in Maharashtra State, India. Four conflicting objectives are considered such as Net Benefits (NB), Crop/Yield Production (CP), Employment Generation/Labour Requirement (EG) and Manure Utilization (MU). Four different cases are considered to incorporate the uncertainty in MOFLP model. To include the uncertainty in irrigation planning problem only objectives are taken as fuzzy and constraints are crisp in nature in Case-I. To consider the uncertainty involved in availability of resources, in Case-II the stipulations are fuzzy. The technological coefficients are fuzzy in Case-III. The Case-IV includes both technological coefficients and stipulations fuzzy. The level of satisfaction (λ) works out to be 0.58, 0.50, 0.50 and 0.28 respectively for Case-I to IV. The results obtained in Case-IV are more realistic and promising as it involves the uncertainty in technological coefficients and stipulations simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.