Abstract
Irrigation in desert ecosystems can either reduce or increase species diversity. Groundwater pumping often lowers water tables and reduces natural wetlands, whereas canal irrigation often creates mesic habitat, resulting in great increases in avian diversity from irrigation. Here we compare a dataset of potential natural vegetation to recent datasets from areal and satellite imagery to show that 60% of the land in the coastal plain of southern Sonora and northern Sinaloa lying below 200 m elevation has been converted by irrigation to more mesic habitats. We then use the record of bird specimens in the world’s museums from this same region of Mexico to examine the avian community before and after the development of extensive irrigation. In general these museum records show an increase in the abundance and diversity of breeding birds associated with mesic habitats. Although thorn forest birds have likely decreased in total numbers, most are common enough in the remaining thorn forest that collection records did not indicate their probable decline. Four migrants having most of their breeding ranges in the US or Canada, Yellow-billed Cuckoo, Cliff Swallow, Bell’s Vireo, and Orchard Oriole, apparently have increased dramatically as breeders in irrigated habitats of NW Mexico. Because these species have decreased or even largely disappeared as breeding birds in parts of the US or Canada, further research should assess whether their increases in new mesic habitats of NW Mexico are linked to their declines as breeding birds in Canada and the US For Bell’s Vireo recent specimens from Sinaloa suggest its new breeding population in NW Mexico may be composed partly of the endangered Least Bell’s Vireo.
Highlights
Biologists generally agree that we are in the midst of an anthropogenic global extinction caused by habitat modification, the introduction of alien species, and global climate change (Wilson, 1992; Steadman, 2006; Jetz, Wilcove & Dodson, 2007; Dirzo et al, 2014)
We were interested to learn whether increased availability of mesic habitat in this region could be providing new breeding habitat for migrant species that are thought to have declined in their historic breeding ranges further north (Wilcove & Wikelski, 2008)
Irrigated agriculture on an industrial scale accounts for the vast majority of land use on the coastal plain of northwest Mexico
Summary
Biologists generally agree that we are in the midst of an anthropogenic global extinction caused by habitat modification, the introduction of alien species, and global climate change (Wilson, 1992; Steadman, 2006; Jetz, Wilcove & Dodson, 2007; Dirzo et al, 2014). Even though climate change will be more dramatic in temperate regions, habitat modification and climate change are projected to increase disproportionately as drivers of extinction in tropical species because so many have small ranges, which make them disproportionately susceptible to habitat and climate changes (Jetz, Wilcove & Dodson, 2007). During the last half-century massive agricultural irrigation projects have transformed extensive areas of original thorn forest in northern Sinaloa and southern Sonora, Mexico into mesic habitats. This change has the potential to differentially affect species based on habitat preferences. We were interested to learn whether increased availability of mesic habitat in this region could be providing new breeding habitat for migrant species that are thought to have declined in their historic breeding ranges further north (Wilcove & Wikelski, 2008)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.