Abstract

We have studied the effect of shear on the stability of suspensions made of non-Brownian solid particles. We demonstrate the existence of an irreversible transition where the solid particles aggregate at remarkably low volume fractions (phi approximately 0.1). This shear-induced aggregation is dramatic and exhibits a very sudden change in the viscosity, which increases sharply after a shear-dependent induction time. We show that this induction time is related exponentially to the shear rate, reflecting the importance of the hydrodynamic forces in reducing the repulsive energy barrier that prevents the particles from aggregating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.