Abstract

The self-assembly of ovalbumin into fibrils and resulting network properties were investigated at pH 2, as a function of ionic strength. Using transmission electron microscopy (TEM), the effect of ovalbumin concentration on the contour length was determined. The contour length was increasing with increasing ovalbumin concentration. TEM micrographs were made to investigate the effect of ionic strength on the contour length. In the measured ionic strength regime (0.01–0.035 M) fibrils of approximately equal length (±200 nm) were observed. TEM micrographs showed that the contour length of the fibrils, versus time after dilution, remained constant, which indicates that the self-assembly of ovalbumin is irreversible. Using the results of rheological measurements, we observed a decreasing critical percolation concentration with increasing ionic strength. We explain this result in terms of an adjusted random contact model for charged semiflexible fibrils. Hereby, this model has now been proven to be valid for fibril networks of β-lg, BSA and, currently, for ovalbumin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.