Abstract

Previous investigations in our laboratory demonstrated the existence of an intrinsic mechanism, termed membrane modulation, capable of restoring sensitivity to aspirin treated platelets, resulting in irreversible aggregation in response to arachidonic acid (AA). The mechanism underlying correction of aspirin induced inhibition of platelet function, however, was not clear. In the present study we have evaluated the role of lipoxygenase (LO) metabolites of AA in securing irreversible aggregation of drug induced cyclooxygenase (CO) deficient platelets. Platelets treated with aspirin or Ibuprofen did not convert radiolabeled AA to thromboxane, but generated significant quantities of hydroxy acids via the LO pathway. However, drug exposed platelets, when stirred with epinephrine first and then challenged with AA, aggregated irreversibly. Eicosatetraynoic acid (ETYA 1, U53119) inhibited AA conversion by the LO pathway, whereas 5,8,11,14-eicosatetraynoic acid (ETYA 2) inhibited AA conversion by both CO and LO enzymes. Yet, at the inhibitory concentration these fatty acids failed to prevent AA induced irreversible aggregation of CO deficient, alpha adrenergic receptor stimulated platelets. Results of our studies show that the generation of LO metabolites of AA are not essential for securing irreversible aggregation of platelets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.