Abstract

To determine the mechanism causing degeneration of the retinal pigment epithelium (RPE) and photoreceptors in mice after an intravenous injection of sodium iodate (NaIO3). The time-dependent changes in NaIO3-induced retinal degeneration were determined by analyzing the retinal morphology by optical coherence tomographic (OCT) images, histological sections of the retina, physiology of the retina by electroretinography (ERG), and retinal blood flow by laser speckle flowgraphy. In addition, the expression of the genes associated with age-related macular degeneration in humans was assessed in the NaIO3-treated mice by RT-PCR. We also investigated whether macrophages were involved in the NaIO3-induced retinal degeneration. The intravenous injection of 20 mg/kg NaIO3 altered the morphology of the RPE cells and the ERGs transiently. With 40 mg/kg of NaIO3, the degeneration of the RPE cells was still present at 28 days. Aggregated melanin granules were surrounded by zonula occludens protein 1 (ZO-1)-positive cells. In addition, 40 mg/kg of NaIO3 led to a reduction in the amplitudes of the a- and b-waves of the dark-adapted ERGs. Histological studies showed that macrophages had infiltrated the retina and were present around the altered RPE cells. Depletion of the macrophages by a prior injection of clodronate liposomes prevented the damage of the outer retina after the NaIO3 injection but not the RPE. The NaIO3-induced retinal damage was reversible at low concentrations but permanent at high concentrations of NaIO3. The accumulation of macrophages around the RPE cells caused the photoreceptor cell death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call