Abstract

The mobility of phosphorus (P) in septic system plumes remains a topic of debate because of the considerable reactivity of this constituent. In this study, a septic system plume in Ontario was monitored over a 16-year period with detail that clearly shows the advancing frontal portion of the P plume. This monitoring record provides insight into the extent of secondary P attenuation in the ground water zone beyond that available from previous studies. A P plume 16 m in length developed over the monitoring period with PO(4)-P concentrations (3 to 6 mg/L) that approached the concentrations present under the tile bed. Simulations using an analytical model showed that when first-order solute decay was considered to account for the possibility of secondary P attenuation in the ground water zone, field values could only be matched when decay was absent or occurred at an exceedingly slow rate (half-life greater than 30 years). Thus, hypothesized secondary P attenuation mechanisms such as slow recystallization of sorbed P into insoluble metal phosphate minerals, diffusion into microsites, or kinetically slow direct precipitation of P minerals such as hydroxyapatite were inactive in the ground water zone at this site or occurred at rates that were too slow to be observed in the context of the current 16-year study. Desorption tests on sediment samples from below the tile bed indicated a PO(4) distribution coefficient (K(d)) of 4.8, which implies a P retardation factor of 25, similar to the field apparent value of 37 determined from model calibrations. This example of inactive secondary P attenuation in the ground water zone shows that phosphorus in some ground water plumes can remain mobile and conservative for decades. This has important implications for septic systems located in lakeshore environments when long-term usage scenarios are considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call