Abstract

In this article we consider how the operator of an electric power system should activate bids on the regulating power market in order to minimize the expected operation cost. Important characteristics of the problem are reaction times of actors on the regulating market and ramp-rates for production changes in power plants. Neglecting these will in general lead to major underestimation of the operation cost. Including reaction times and ramp-rates leads to an impulse control problem with delayed reaction. Two numerical schemes to solve this problem are proposed. The first scheme is based on the least-squares Monte Carlo method developed by Longstaff and Schwartz (Rev Financ Stud 14:113–148, 2001). The second scheme which turns out to be more efficient when solving problems with delays, is based on the regression Monte Carlo method developed by Tsitsiklis and van Roy (IEEE Trans Autom Control 44(10):1840–1851, 1999) and (IEEE Trans Neural Netw 12(4):694–703, 2001). The main contribution of the article is the idea of using stochastic control to find an optimal strategy for power system operation and the numerical solution schemes proposed to solve impulse control problems with delayed reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.