Abstract

Irreversible electroporation (IRE) is a promising method for the ablation of tumors using intense electric pulses. Because the mechanism of IRE is based on the breaking of the cytoplasmic membrane, only the cells are necrotized non-thermally without causing damage to the extracellular matrix when pulse settings are optimized to avoid Joule heating. In IRE therapy, a train of electric pulses of a few kilovolts is applied to the targeted tissue via a pair of electrodes. To definitely ablate the tissue and minimize the temperature rise during the application of pulses, determination of the adequate settings of the pulsesand electrode configuration prior to the therapy are important. Studies from the engineering perspective are therefore highly helpful for the successful use of IRE. In the current study, the authors’ work associated with IRE will be introduced, including a 3D numerical simulation for the estimation of the electric field and temperature distribution around the electrodes, IRE experiment with a 3D cell culture model, and evaluation of cell destruction and thermal injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call