Abstract

Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) has been applied to the investigation of NO adsorption on Pt(111) under various pressures of NO (up to 1 Torr) at room temperature. Under 10−7 Torr, molecular NO occupies the most stable fcc-hollow sites and partially occupies the energetically unfavorable atop sites. NO reversibly desorbs from the atop sites after evacuation. At NO pressures higher than 10−6 Torr, however, irreversible adsorption of atomic oxygen takes place via NO dissociation, leading to the formation of NO+O domains. This result is consistent with near-edge X-ray absorption fine structure (NEXAFS) and scanning tunneling microscopy (STM) results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.