Abstract

The ability of hemoglobin (Hb) to transport respiratory gases is directly linked to its quaternary structure properties and reversible changes between T (tense) and R (relax) state. In this study we demonstrated that packed red blood cells (pRBCs) storage resulted in a gradual increase in the irreversible changes in the secondary and quaternary structures of Hb, with subsequent impairment of the T↔R transition. Such alteration was associated with the presence of irreversibly settled in the relaxed form, quaternary structure of Hb, which we termed R′. On the secondary structure level, disordered protein organization involved formation of β-sheets and a decrease in α-helices related to the aggregation process stabilized by strong intermolecular hydrogen bonding. Compensatory changes in RBCs metabolism launched to preserve reductive microenvironment were disclosed as an activation of nicotinamide adenine dinucleotide phosphate (NADPH) production and increased reduced to oxidized glutathione (GSH/GSSG) ratio. For the first time we showed the relationship between secondary structure changes and the occurrence of newly discovered R′, which through an artificial increase in oxyhemoglobin level altered Hb ability to bind and release oxygen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.