Abstract

Activation of Rho-associated protein kinase 1 (ROCK1) and myotonic dystrophy kinase-related CDC42-binding kinase alpha (MRCKα) by caspases during apoptosis in vertebrates represents a prototypical example of co-option of kinases by proteases. How caspases acquired the ability to control these proteins during evolution of vertebrates is still unknown. Here, we report a phylogenetic and molecular study on the acquisition of caspase-cleavage sites in the family of Rho-activated kinases (RaKs). We demonstrate that the acquisition of such sites has more frequently occurred in identifiable intrinsically disordered regions (IDRs) within or flanking the coiled-coil domain. Thanks to computational identification of IDRs in protein sequences of different organisms, we predicted and validated the independent evolution of two caspase-cleavage sites in ROCK of arthropods and the loss of one of the MRCKα caspase-cleavage sites in ray-finned fishes. In conclusion, we shed light on the propensity of RaKs to evolve novel proteolytic sites, causing kinase activation and uniform subcellular distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call