Abstract

We study conformal field theories with boundaries, and their boundary renormalization group (RG) flows, using methods from quantum information theory. Positivity of the relative entropy, together with unitarity and Lorentz invariance, give rise to bounds that characterize the irreversibility of such flows. This generalizes the recently proved entropic g-theorem to higher dimensions. In 2 + 1 dimensions with a boundary, we prove the entropic b-theorem — the decrease of the two-dimensional Weyl anomaly under boundary RG flows. In higher dimensions, the bound implies that the leading area coefficient of the entanglement entropy induced by the defect decreases along the flow. Our proof unifies these properties, and provides an information-theoretic interpretation in terms of the distinguishability between the short distance and long distance states. Finally, we establish a sum rule for the change in the area term in theories with boundaries, which could have implications for models with localized gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.