Abstract
We consider tournaments played by a set of players in order to establish a ranking among them. We introduce the notion of irrelevant match, as a match that does not influence the ultimate ranking of the involved parties. After discussing the basic properties of this notion, we seek out tournaments that have no irrelevant matches, focusing on the class of tournaments where each player challenges each other exactly once. We prove that tournaments with a static schedule and at least five players always include irrelevant matches. Conversely, dynamic schedules for an arbitrary number of players can be devised that avoid irrelevant matches, at least for one of the players involved in each match. Finally, we prove by computational means that there exist tournaments where all matches are relevant to both players, at least up to eight players.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.