Abstract
It is an elementary exercise to show that any non-trivial simple graph has two vertices with the same degree. This is not the case for digraphs and multigraphs. We consider generating irregular digraphs from arbitrary digraphs by adding multiple arcs. To this end, we define an irregular labeling of a digraph D to be an arc-labeling of the digraph such that the ordered pairs of the sums of the in-labels and out-labels at each vertex are all distinct. We define the strength s → ( D ) of D to be the smallest of the maximum labels used across all irregular labelings. Similar definitions for graphs have been studied extensively and a different formulation of digraph irregularity was given in [H. Hackett, Irregularity strength of graphs and digraphs, Masters Thesis, University of Louisville, 1995]. Here we continue the study of irregular labelings of digraphs. We give a general lower bound on s → ( D ) and determine s → ( D ) exactly for tournaments, directed paths and cycles and the orientation of the path where all vertices have either in-degree 0 or out-degree 0. We also determine the irregularity strength of a union of directed cycles and a union of directed paths, the latter which requires a new result pertaining to finding circuits of given lengths containing prescribed vertices in the complete symmetric digraph with loops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.