Abstract

We study some non-highest weight modules over an affine Kac-Moody algebra at non-critical level. Roughly speaking, these modules are non-commutative localizations of some non-highest weight "vacuum" modules. Using free field realization, we embed some rings of differential operators in endomorphism rings of our modules. These rings of differential operators act on a localization of the space of coinvariants of any module over the Kac-Moody algebra with respect to a certain level subalgebra. In a particular case this action is identified with the Casimir connection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.