Abstract

Reaction-diffusion equations have proved to be highly successful models for a wide range of biological and chemical systems, but chaotic solutions have been very rarely documented. We present a new mechanism for generating apparently chaotic spatiotemporal irregularity in such systems, by analysing in detail the bifurcation structure of a particular set of reaction-diffusion equations on an infinite one-dimensional domain, with particular initial conditions. We show that possible solutions include travelling fronts which leave behind either regular or irregular spatiotemporal oscillations. Using a combination of analytical and numerical analysis, we show that the irregular behaviour arises from the instability of oscillations induced by the passage of the front. Finally, we discuss the generality of this mechanism as a way in which spatiotemporal irregularities can arise naturally in reaction-diffusion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.