Abstract
A polyomino is a generalization of the domino and is created by connecting a fixed number of unit squares along edges. Tiling a region with a given set of polyominoes is a hard combinatorial optimization problem. This paper is motivated by a recent application of irregular polyomino tilings in the design of phased array antennas. Specifically, we formulate the irregular polyomino tiling problem as a nonlinear exact set covering model, where irregularity is incorporated into the objective function using the information-theoretic entropy concept. An exact solution method based on a branch-and-price framework along with novel branching and lower-bounding schemes is proposed. The developed method is shown to be effective for small- and medium-size instances of the problem. For large-size instances, efficient heuristics and approximation algorithms are provided. Encouraging computational results including phased array antenna simulations are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.