Abstract

We study the dynamical properties of irregular model sets and show that the translation action on their hull always admits an infinite independence set. The dynamics can therefore not be tame and the topological sequence entropy is strictly positive. Extending the proof to a more general setting, we further obtain that tame implies regular for almost automorphic group actions on compact spaces. In the converse direction, we show that even in the restrictive case of Euclidean cut and project schemes irregular model sets may be uniquely ergodic and have zero topological entropy. This provides negative answers to questions by Schlottmann and Moody in the Euclidean setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.