Abstract

Spatiotemporal excitation patterns in the FitzHugh-Nagumo model are studied, which result from the disturbance of a primary pacemaker by a secondary pacemaker. The primary and secondary pacemakers generate regular waves with frequencies f(pace) and f(pert), respectively. The pacemakers are spatially separated, but waves emanating from them encounter each other via a small bridge. This leads to three different types I-III of irregular excitation patterns in disjunct domains of the f(pace)-f(pert) plane. Types I and II are caused by detachments of waves coming from the two pacemakers at corners of the bridge. Type III irregularities are confined to a boundary region of the system and originate from a partial penetration of the primary waves into a space, where circular wave fronts from the secondary pacemaker prevail. For this type, local frequencies can significantly exceed f(pace) and f(pert). The degree of irregularity found for the three different types is quantified by the entropy of the local frequency distribution and an order parameter for phase coherence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.