Abstract

A rational Diophantine $m$-tuple is a set of $m$ nonzero rationals such that the product of any two of them is one less than a perfect square. In this paper we characterize the notions of regular Diophantine quadruples and quintuples, introduced by Gibbs, by means of elliptic curves. Motivated by these characterizations, we find examples of elliptic curves over $\mathbf{Q}$ with torsion group $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ and with rank equal 8.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.