Abstract
The semantic segmentation of high-resolution remote sensing images has broad application prospects in land cover classification, road extraction, urban planning and other fields. To alleviate the influence of the large data volume and complex background of high-resolution remote sensing images, the usual approach is to downsample them or cut them into small pieces for separate processing. Even if combining the two methods can improve the segmentation efficiency, it ignores the differences between the middle and the edge regions. Therefore, we consider the characteristics of large and irregular region in high-resolution remote sensing images, and then propose an irregular adaptive refinement network to locate the irregular edge region, which will be refined adaptively. Specifically, on the basis of effectively preserving the global and local information, the prediction confidence is calculated to locate pixel points that are poorly segmented, so as to form irregular regions requiring further refinement, avoiding to ‘over-refine’ intermediate region with good segmentation. At the same time, considering the difference in the refinement degree of different pixels, we propose to adaptively integrate the local segmentation results to refine the coarse segmentation results. In addition, in order to bridge the gap between the two extreme ends of the scale space, we introduce a multi-scale framework. Finally, we conducted experiments on the Deepglobe dataset showing that the proposed method performed 0.37% to 0.87% better than the previous state-of-the-art methods in terms of mean Intersection over Union (mIoU).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.