Abstract
Schinzel's Hypothesis H is a general conjecture in number theory on prime values of polynomials that generalizes, e.g., the twin prime conjecture and Dirichlet's theorem on primes in arithmetic progression. We prove a quantitative arithmetic analog of this conjecture for polynomial rings over pseudo algebraically closed fields. This implies results over large finite fields via model theory. A main tool in the proof is an irreducibility theorem à la Hilbert.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.