Abstract

Recently, pulsed NMRON experiments have been carried out on trace amounts of radioactive54Mn in the antiferromagnet MnCl24H2O at 500 MHz (Le Gros et al. [1]). In this compound, the quadrupole splitting between the two lowest NMR transitions is ≈3 MHz, which precludes the use of non-selective (hard) rf pulses. Yet within the restricted 2*2 manifold, associated with a given transition, the nuclear rotation is “hard”. In this paper, the theory of “selective-hard” NMRON and MQ-NMR experiments is developed within the framework of irreducible tensor operators. In essence, the theory extends the early work of Jaynes [4] to deal with the higher-order multipolar states created during the course of a given NMR experiment. Several new pulsed NMRON and MQ-NMR experiments are proposed. For example, it is demonstrated how “ouble resonance”, “selective-hard” experiments on the pseudo spin-1 manifold spanned by |±1> and |0> Zeeman states of any integer spinI could be used to extract small chemical shifts in the face of very large quadrupole splittings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.