Abstract

AbstractWe prove a function field analogue of Maynard’s celebrated result about primes with restricted digits. That is, for certain ranges of parameters $n$ and $q$ , we prove an asymptotic formula for the number of irreducible polynomials of degree $n$ over a finite field $\mathbb{F}_{q}$ whose coefficients are restricted to lie in a given subset of $\mathbb{F}_{q}$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.