Abstract

We describe the irreducible morphisms in the category of modules over a repetitive algebra. We find three special canonical forms: The first canonical form happens when all the component morphisms are split monomorphisms, the second when all the component morphisms are split epimorphisms and the third when there is exactly one irreducible component map. Also, we obtain the same result for the irreducible homomorphisms in the stable category of modules over a repetitive algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.