Abstract
Let \(\mathcal {A}\) be a Hom-finite additive Krull-Schmidt k-category where k is an algebraically closed field. Let \(\text {mod}\mathcal {A}\) denote the category of locally finite dimensional \(\mathcal {A}\)-modules, that is, the category of covariant functors \(\mathcal {A} \to \text {mod}k\). We prove that an irreducible monomorphism in \(\text {mod}\mathcal {A}\) has a finitely generated cokernel, and that an irreducible epimorphism in \(\text {mod}\mathcal {A}\) has a finitely co-generated kernel. Using this, we get that an almost split sequence in \(\text {mod}\mathcal {A}\) has to start with a finitely co-presented module and end with a finitely presented one. Finally, we apply our results to the study of rep(Q), the category of locally finite dimensional representations of a strongly locally finite quiver. We describe all possible shapes of the Auslander-Reiten quiver of rep(Q).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.