Abstract

In linear elasticity, a fourth-order elasticity (stiffness) tensor of 21 independent components completely describes deformation properties elastic constants of a material. The main goal of the current work is to derive a compact matrix representation of the elasticity tensor that correlates with its intrinsic algebraic properties. Such representation can be useful in design of artificial materials. Owing to Voigt, the elasticity tensor is conventionally represented by a (6 × 6) symmetric matrix. In this paper, we construct two alternative matrix representations that conform with the irreducible decomposition of the elasticity tensor. The 3 × 7 matrix representation is in correspondence with the permutation transformations of indices and with the general linear transformation of the basis. An additional representation of the elasticity tensor by two scalars and three 3 × 3 matrices is suitable to describe the irreducible decomposition under the rotation transformations. We present the elasticity tensor of all crystal systems in these compact matrix forms and construct the hierarchy diagrams based on this representation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.