Abstract

Generalizing the super duality formalism for finite-dimensional Lie superalgebras of type $ABCD$, we establish an equivalence between parabolic BGG categories of a Kac-Moody Lie superalgebra and a Kac-Moody Lie algebra. The characters for a large family of irreducible highest weight modules over a symmetrizable Kac-Moody Lie superalgebra are then given in terms of Kazhdan-Lusztig polynomials for the first time. We formulate a notion of integrable modules over a symmetrizable Kac-Moody Lie superalgebra via super duality, and show that these integrable modules form a semisimple tensor subcategory, whose Littlewood-Richardson tensor product multiplicities coincide with those in the Kac-Moody algebra setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.