Abstract

We address the issue of the reducibility of the dynamics on a multilayer network to an equivalent process on an aggregated single-layer network. As a typical example of models for opinion formation in social networks, we implement the voter model on a two-layer multiplex network, and we study its dynamics as a function of two control parameters, namely the fraction of edges simultaneously existing in both layers of the network (edge overlap), and the fraction of nodes participating in both layers (interlayer connectivity or degree of multiplexity). We compute the asymptotic value of the number of active links (interface density) in the thermodynamic limit, and the time to reach an absorbing state for finite systems, and we compare the numerical results with the analytical predictions on equivalent single-layer networks obtained through various possible aggregation procedures. We find a large region of parameters where the interface density of large multiplexes gives systematic deviations from that of the aggregates. We show that neither of the standard unweighted aggregation procedures is able to capture the highly nonlinear increase in the lifetime of a finite size multiplex at small interlayer connectivity. These results indicate that multiplexity should be appropriately taken into account when studying voter model dynamics, and that, in general, single-layer approximations might be not accurate enough to properly understand processes occurring on multiplex networks, since they might flatten out relevant dynamical details.

Highlights

  • Real-world interactions often happen at different levels and are properly modelled by means of multilayer networks

  • State changes can propagate across layers: the presence of a fraction of nodes existing in both layers intertwines the voter dynamics on the two layers, so that in general the evolution of the overall multiplex dynamics might differ from the one we would observe on two independent networks of the same size

  • Multilayer networks allow to extend the applicability of network theory to more realistic contexts in which nodes are connected through concurrent interaction patterns of different kinds

Read more

Summary

January 2016

Any further distribution of We address the issue of the reducibility of the dynamics on a multilayer network to an equivalent this work must maintain process on an aggregated single-layer network. We show that neither of the standard unweighted aggregation procedures is able to capture the highly nonlinear increase in the lifetime of a finite size multiplex at small interlayer connectivity. These results indicate that multiplexity should be appropriately taken into account when studying voter model dynamics, and that, in general, single-layer approximations might be not accurate enough to properly understand processes occurring on multiplex networks, since they might flatten out relevant dynamical details

Introduction
The model
Numerical results
Irreducibility of the dynamics
Aggregation method 1
Aggregation method 2
Comparing aggregated to multiplex dynamics
Nonlinear multiplex effects
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.