Abstract
We study irrational pencils with isolated critical points on compact aspherical complex manifolds. We prove that if the set of critical points is nonempty, the homology of the kernel of the morphism induced by the pencil on fundamental groups is not finitely generated. This generalizes a result by Dimca, Papadima and Suciu. By considering self-products of the Cartwright-Steger surface, this allows us to build new examples of smooth projective varieties whose fundamental group has a non-finitely generated homology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de la Faculté des sciences de Toulouse : Mathématiques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.