Abstract
We introduce an irrational factor of order k defined by \({I_{k}(n) ={\prod_{i=1}^{l}} p_{i}^{\beta_{i}}}\), where \({n = \prod_{i=1}^{l} p_{i}^{\alpha_{i}}}\) is the factorization of n and \({\beta_{i} = \left\{\begin{array}{ll}\alpha_i, \quad \quad {\rm if} \quad \alpha_i < k \\ \frac{1}{\alpha_i},\quad \quad {\rm if} \quad \alpha_i \geqq k \end{array}\right.}\). It turns out that the function \({\frac{I_{k} (n)}{n}}\) well approximates the characteristic function of k-free integers. We also derive asymptotic formulas for \({\prod_{v=1}^{n} I_{k}(v)^{\frac{1}{n}}, \sum_{n \leqq x} I_{k}(n)}\) and \({\sum_{n \leqq x} (1 - \frac{n}{x}) I_{k}(n)}\).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.