Abstract

Hyaluronan (HA) is a linear glycosaminoglycan that accumulates in the interstitium of injured lung and inhibits gas exchange between air and blood. In the present study we investigated the molecular mechanisms behind the local turnover of HA during the early phase of irradiation-evoked lung fibrosis in rats. Irradiation with a single dose of 30 Gy to the lower part of the right lung of rats induced an accumulation of HA in bronchoalveolar lavage fluid 6 wk after irradiation, followed by return to almost normal levels at 10 wk after irradiation. This was parallelled with a transient downregulation of HA receptors on alveolar macrophages (AMs); 4 and 6 wk after irradiation the binding of [(3)H]HA to AMs was decreased to about 50% of that of AMs from nonirradiated control rats, returning to almost normal level at 10 wk after irradiation. Analysis of the expression of rat HA synthase (HAS) isoforms (rHAS1, rHAS2, and rHAS3) and rat hyaluronidases (rHYAL1 and rHYAL2) by Northern blotting revealed an upregulation of rHAS2 messenger RNA at 4, 6, and 10 wk after irradiation, but a progressive decrease in the constitutive expression of rHYAL2 at 6 and 10 wk after irradiation; rHAS1 was undetectable, whereas rHAS3 and rHYAL1 were faintly detectable. Although transforming growth factor-beta1 stimulated HA production by normal lung fibroblasts, it inhibited HYAL activity in lysosomes and HYAL activity released into the culture media. Another interesting observation was that HA fragments, which likely result from the action of HYAL, induced expression of types I and III collagen genes. Our results indicate that rHAS2 and rHYAL2 are involved in the turnover of HA during the early phase of lung injury and that rHAS2 and rHYAL2 as well as HA fragments may play important roles in the pathogenesis of lung fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.