Abstract

Very dilute Fe-Cu systems, model alloys of nuclear reactor pressure vessel (RPV) steels, irradiated by fast neutrons, are studied by positron annihilation experiments and simple calculations. The ultrafine Cu precipitates, which are never formed by thermal aging in the dilute alloys, are observed clearly and are strongly suggested to be responsible for irradiation-induced embrittlement of RPV steels. The formation and recovery process of the precipitates are revealed: (i) irradiation-induced Cu-vacancy complexes aggregate into microvoids; (ii) around $400\ifmmode^\circ\else\textdegree\fi{}\mathrm{C}$ the dissociation of vacancies from the microvoids leads to the formation of the Cu precipitates of about 1 nm in size; and (iii) the Cu precipitates anneal out at about $650\ifmmode^\circ\else\textdegree\fi{}\mathrm{C}.$

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.