Abstract

How radiation blocks spermatogenesis in certain strains of rats, such as LBNF(1), is not known. Because the block depends on androgen, we propose that androgen affects Sertoli cell function in irradiated LBNF(1) rats, resulting in the failure of spermatogonial differentiation. To begin to identify genes that may participate in this irradiation-induced blockade of spermatogenesis, we investigated the expression of several Sertoli genes in response to irradiation. The expression of the PEM: homeobox gene from its androgen-dependent Sertoli-specific proximal promoter (Pp) was dramatically reduced more than 100-fold in response to irradiation. In contrast, most other genes and gene products reported to be localized to the Sertoli cell, including FSH receptor (FSHR), androgen receptor (AR), SGP1, and the transcription factor CREB, did not exhibit significant changes in expression, whereas transferrin messenger RNA (mRNA) expression dramatically increased in response to irradiation. Irradiation also decreased Pp-driven PEM: mRNA levels in mouse testes (approximately 10-fold), although higher doses of irradiation than in rats were required to inhibit PEM: gene expression in testes of mice, consistent with their greater radioresistance. The decrease in Pem gene expression in mouse testis was also selective, as the expression of CREB, GATA-1, and SGP1 were little affected by irradiation. We conclude that the dramatic irradiation-triggered reduction of Pem expression in Sertoli cells is a conserved response that may be a marker for functional changes in response to irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.